miércoles, 10 de octubre de 2018

chi-cuadrada

Esta prueba puede utilizarse incluso con datos medibles en una escala nominal. La hipótesis nula de la prueba Chi-cuadrado postula una distribución de probabilidad totalmente especificada como el modelo matemático de la población que ha generado la muestra.
Para realizar este contraste se disponen los datos en una tabla de frecuencias. Para cada valor o intervalo de valores se indica la frecuencia absoluta observada o empírica (Oi). A continuación, y suponiendo que la hipótesis nula es cierta, se calculan para cada valor o intervalo de valores la frecuencia absoluta que cabría esperar o frecuencia esperada (Ei=n·pi , donde n es el tamaño de la muestra y pi la probabilidad del i-ésimo valor o intervalo de valores según la hipótesis nula). El estadístico de prueba se basa en las diferencias entre la Oi y Ei y se define como:


Este estadístico tiene una distribución Chi-cuadrado con k-1 grados de libertad si n es suficientemente grande, es decir, si todas las frecuencias esperadas son mayores que 5. En la práctica se tolera un máximo del 20% de frecuencias inferiores a 5.
Si existe concordancia perfecta entre las frecuencias observadas y las esperadas el estadístico tomará un valor igual a 0; por el contrario, si existe una gran discrepancias entre estas frecuencias el estadístico tomará un valor grande y, en consecuencia, se rechazará la hipótesis nula. Así pues, la región crítica estará situada en el extremo superior de la distribución Chi-cuadrado con k-1 grados de libertad.




No hay comentarios.:

Publicar un comentario

Pruebas Pruebas de hipótesis para una muestra muestra

http://www.geociencias.unam.mx/~ramon/EstInf/Clase13.pdf