miércoles, 10 de octubre de 2018

estimadores

Un estimador es un estadístico (una función de la muestra) utilizado para estimar un parámetro desconocido de la población. Por ejemplo, si se desea conocer el precio medio poblacional de un artículo (parámetro desconocido) se recogen observaciones del precio de dicho artículo en diversos establecimientos (muestra) pudiendo utilizarse la media aritmética de las observaciones para estimar el precio medio poblacional. Para cada parámetro pueden existir varios estimadores diferentes. En general, se elige el estimador que posea mejores propiedades que los restantes, como insesgadez, eficiencia, convergencia y robustez (consistencia). El valor de un estimador proporciona una estimación puntual del valor del parámetro en estudio. En general, se realiza la estimación mediante un intervalo, es decir, se obtiene un intervalo parámetro muestral error muestral   dentro del cual se espera se encuentre el valor poblacional dentro de un cierto nivel de confianza. El nivel de confianza es la probabilidad de que a priori el valor poblacional se encuentre contenido en el intervalo.

SESGO:
Se denomina sesgo de un estimador a la diferencia entre la esperanza (valor esperado) del estimador y el verdadero valor del parámetro a estimar. Es deseable que un estimador sea insesgado o centrado, esto es, que el sesgo sea nulo para que la esperanza del estimador sea igual al valor del parámetro que se desea estimar. Por ejemplo, si se desea estimar la media de una población, la media aritmética de la muestra es un estimador insesgado de la misma, ya que la esperanza (valor esperado) es igual a la media poblacional.

chi-cuadrada

Esta prueba puede utilizarse incluso con datos medibles en una escala nominal. La hipótesis nula de la prueba Chi-cuadrado postula una distribución de probabilidad totalmente especificada como el modelo matemático de la población que ha generado la muestra.
Para realizar este contraste se disponen los datos en una tabla de frecuencias. Para cada valor o intervalo de valores se indica la frecuencia absoluta observada o empírica (Oi). A continuación, y suponiendo que la hipótesis nula es cierta, se calculan para cada valor o intervalo de valores la frecuencia absoluta que cabría esperar o frecuencia esperada (Ei=n·pi , donde n es el tamaño de la muestra y pi la probabilidad del i-ésimo valor o intervalo de valores según la hipótesis nula). El estadístico de prueba se basa en las diferencias entre la Oi y Ei y se define como:


Este estadístico tiene una distribución Chi-cuadrado con k-1 grados de libertad si n es suficientemente grande, es decir, si todas las frecuencias esperadas son mayores que 5. En la práctica se tolera un máximo del 20% de frecuencias inferiores a 5.
Si existe concordancia perfecta entre las frecuencias observadas y las esperadas el estadístico tomará un valor igual a 0; por el contrario, si existe una gran discrepancias entre estas frecuencias el estadístico tomará un valor grande y, en consecuencia, se rechazará la hipótesis nula. Así pues, la región crítica estará situada en el extremo superior de la distribución Chi-cuadrado con k-1 grados de libertad.




Pruebas Pruebas de hipótesis para una muestra muestra

http://www.geociencias.unam.mx/~ramon/EstInf/Clase13.pdf